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Abstract— This paper presents a bi-objective credibility-based 

fuzzy mathematical programming model to design a location-pricing 

decision problem in a closed-loop supply chain with a single product 

under uncertainty. This problem aims to maximize the total supply 

chain profit by determining the optimal number of the facility 

location, collection and distribution centres (CDCs), the assignment 

of the customer zones to the CDCs and the CDCs to the plants, the 

price of the new product and the incentive value of the returned 

product that should be offered for used product. In order to cope with 

the uncertainties, an appropriate fuzzy method based on the 

credibility measure is developed. To validate the presented model, a 

numerical example is taken into account. 

Keywords— Location-pricing decision, Closed-loop supply 

chain, Fuzzy mathematical programming, Credibility theory. 

I. INTRODUCTION 

Closed-loop supply chain has been more attention in   

recent years for increasing the supply chain profit. It 

includes all reverse logistic activities as collecting, 

remanufacturing and refurbishing in addition to all forward 

activities [1]. Beside the environmental concern, a lot of 

countries force their companies to undertake take-back 

responsibilities to reduce waste. A closed-loop supply chain is 

driven by high profitably and growing attention on an 

environment. In the other words, by collecting the used 

product from a customer, companies can gain some value that 

this value increase companies profit and reduce raw materials 

consumption. So, recycling the used product and taking it back 

to customers may actually reduce waste, which will decrease a 

harmful effect of these waste in the environment. The 

objective of a closed-loop network design that consist both 

forward and reverse networks is to determine the number of 

locations, capacity of facilities, inventories policy and amount 
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of flow between the facilities [2]. In this paper, we represent a 

comprehensive and practical mixed-integer nonlinear multi-

objective possibilistic model for the integrated closed-loop 

supply chain network design to decide on both the optimal 

location for distribution, collection and recovery center, 

optimal amounts of inventories that should be carried between 

these facility location centers, optimal price of the new product 

and refund value as an incentive value that should be offered 

for the used product, in order to maximize the supply chain 

profit. Facility location decision is one of the most important 

decision in closed-loop supply chain management. The most 

studies in this area consider this issue because opening or 

closing facility location is very expensive and it takes a long 

time [1]. This problem evaluates, in which the potential facility 

location should be selected for P facilities. First, for modelling 

the reverse supply chain network, a simple single-product 

uncapacitated model was used. By taking the time, it becomes 

more complicated with a multi-product capacitated and multi-

objective problem [3]. All of the aforementioned problem are 

in an NP-hard class. So, many heuristic and meta-heuristic 

algorithms have been developed for solving these problems. 

The genetic algorithm [4], simulate annealing [5], Tabu search 

[6] and scatter search [7] are used for solving a mixed-integer 

linear programming model. A bi-objective mixed-integer 

linear programming model was developed for the integrated 

logistics network to avoid sub-optimality. The two main 

objectives of this paper are to minimize the total cost and 

maximize the responsiveness of a logistic network. For solving 

the problem, they represent an efficient memetic algorithm that 

uses a new dynamic search strategy by considering three 

different local search [8].  However, there are two drawbacks 

for using stochastic methods. In the first one, there are not 

enough historical data for an uncertain parameter to obtain the 

exact random distribution of an uncertain parameter and the 

second one is in most previous studies in this area. The 

uncertainty was modelled under a scenario-based stochastic 

programming which lead computationally challenging problem 

[3]. For satisfying aforementioned drawbacks, the fuzzy set 

theory [9] with the ability to handle different kinds of 

uncertainties is a good alternative. A bi-objective possibilistic 

mixed-integer programming model was proposed to cope with 

uncertainty in the closed-loop supply chain network design 
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problem. In this paper, the network design decision was 

integrated in both forward and reverse supply chain networks. 

Also, it includes strategic network design decisions with a 

tactical material flow to avoid sub-optimality. An integrated 

fuzzy solution method was developed for solving this 

possibilistic optimization model [3]. A pricing decision model 

for a fuzzy closed loop with retail competition was proposed in 

the marketplace which the fuzziness was related to consumer 

demand, collecting cost and remanufacturing cost. The goal of 

this paper is how plant can reach optimal decision with respect 

to fuzzy environment. [10] proposed an uncertain reverse 

logistic network with different product recovery, whose 

uncertainty was related to demand and return quantities was 

proposed. They focused on inventory control and production 

planning optimization. Also, by using fuzzy trapezoidal 

numbers, they modelled the problem. For obtaining a solution 

to the inventory control and production planning, they 

considered a two-phase fuzzy mixed-integer optimization 

algorithm. 

II. PROBLEM DEFINITION 

 A mixed-integer non-linear multi-objective possibilistic 

programming model for both forward and reverse supply chain 

is proposed. A new product that produces in plant is transfer to 

distribution center and then to customer zone through forward 

flow. In the reverse flow the used product first, collect at 

collection center and then these collected products shipped to 

recovery center for remanufacturing and then transfer to 

distribution center. We consider that each customer in 

customer zone go to distribution center themselves to buy the 

product which the demand of this customer depend on some 

parameter such as price and distance between customer zone 

and distribution center where by decreasing the price or a 

distribution center is opened at closer location to the customer 

in a certain zone k, more of the customer in that zone k will 

buy the product. The demand of a customer in zone k that go 

to distribution j will be  where k is the 

multiplier price sensitivity of demand, is a binary variable 

which takes the value 1, if customer in zone k go to 

distribution j and 0 otherwise,  is a parameter between 0 

and 1, depending on the distance between zone k and j. In this 

study we assume that customer returns the end life of the 

product and these end life of the product collect at collection 

center. It is obvious that amount of return product from 

customer depend on distance between customer zone and 

collection center. Similar to new product demand, number of 

returned product account by  where b is 

incentive sensitivity of the collected amount,  is a binary 

variable which takes the value 1 if customer from zone k go to 

collection center , 0 otherwise,  is a binary variable 

depending on the distance between customer zone k and 

collection center . Since, data in real world situation are 

inaccessible, especially in long horizon, most of the parameter 

fixed in closed loop supply chain network design have an 

ambiguous nature. In order to satisfying this drawback, we use 

an appropriate possibility distribution [11]. Also, we proposed 

a decision horizon consist multiple periods in proposed model 

and we determine flow quantities between facility due to 

demand and return and other periodic base parameter at each 

period. The main assumption that we consider in this paper are 

as follows: 

 

  There isn’t any scrap in our considered closed loop      

network design  

  All demand of customer must be satisfying and all the     

return product must be collect 

  In the forward flow product follows a push mechanism 

  In the reverse flow product follows a pull mechanism  

  Location of plants and customer zones are determined in    

advance  

 

III. MODEL FORMULATION 

Indices: 
 index for fixed location of plant       

   index for candidate location for distribution center        

           index for fixed location for customer zones       

     index for candidate location for collection centre       

 index for candidate location for recovery center       

 index for time period       

Parameters: 
           number of people in zone  

         demand of customer in zone  that go to distribution center  

at period  

         amount of return products from zone  to collection center  

at period  

 parameter between 0 and 1 depending on the distance between  

and  

     the expected value from return product 

   cost of a producing a new product  

     the price sensitivity of demand 

   the incentive sensitivity of return amounts   

             fixed cost for opening distribution center   

            fixed cost for opening collection center  

          fixed cost for opening recovery center  

          transportation cost from plant  to distribution center      

        transportation cost from distribution  to customer zone         

        transportation cost from customer zone  to collection center             

       transportation cost from collection center  to recover center    

 processing cost at distribution center  

 processing cost at collection center  

       maximum capacity of distribution center   

       maximum capacity of recovery center  

       delivery time from distribution center  to customer zone  

       maximum capacity of collection center   

 maximum capacity of plant  at each period 

       expected delivery time of customer  in period  

        

Variables: 

 optimum price value offered for unit product 

 
optimum incentive value offered for unit used product 

 amount of products transferred from plant  to distribution center  
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at period  

 
amount of products transferred from distribution center  to 

customer zone  at period  

 amount of products transferred from customer  zone  to collection 

center  at period  

 amount of products transfer from collection center  to recovery 

center  at period  

 amount of products transfer from recovery center  to distribution 

center  at period  

 1, if a distribution center is opened at location  ; 0,otherwise 

 1, if a collection center is opened at location  ; 0,otherwise 

 1, if a recovery center is opened at location  ; 0,otherwise 

 1, if customer at zone  is served by a distribution center ; 0, 

otherwise 

 transportation cost from recover center  to distribution centre    

 

IV. MATHEMATICAL MODEL 
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j
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(9) 

       ,tijt mjt j j

i m
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           ,tklt l l

k

q y py l   (11) 

          ,tlmt m m
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o , , , , 0         ,j,k,l,m,tijt jkt mjt klt lmtu h q p i   (14) 

 

V. CREDIBILITY-BASED FUZZY CHANCE 

CONSTRINED PROGRAMMING MODEL 

In most of real life situations, the input parameters of a 

logistics network design problem are tainted by high degree of 

epistemic uncertainty. To cope with this challenging issue, a 

new hybrid credibility-based chance constrained programming 

model is proposed in this research. Let  be a fuzzy variable 

with membership function , and let  be a real number. 

Based on [12] the credibility measure is defined as follows: 

      
1

cr sup 1 sup
2

r x x       

Noteworthy, since 

   suppos r x   and    1 supNec r x    , 

the credibility measure can also be defined as follows: 

      
1

cr
2

r pos r Nec r        

Accordingly, the credibility measure could be defined as an 

average of the possibility and necessity measures. Also, the 

expected value of  can be determined based on the credibility 

measure as follows [12]: 

     cr crE r dr r dr        

Now, assume that  is a trapezoidal fuzzy number denoted 

by four prominent points 
        1 2 3 4

, , ,     . 

It can be proven that if  is a trapezoidal fuzzy number and 

 then: 

         3 4
cr 2 2 2 1r r             

         1 2
cr 2 1 2 2r r             

According to above mentioned descriptions and 

justifications, the proposed credibility based fuzzy 

mathematical programming can be formulated as follows: 
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    mj m mjt

t m j
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(16) 

 s. t. constraint (3)-(8) (17) 

cr       i,t,kijt i k

j

o pp 
 

   
 
  (18) 
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j

p z pz l m t
 
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 
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 x , , , , 0,1       ,l,m,kj l m kj kly z x x j   (22) 

 

By considering the expected value of trapezoidal fuzzy 

numbers, the above-mentioned credibility-based chance 

constraint programming model can be converted to the 

following crisp equivalent MILP model: 
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It should be noted that in the above-mentioned formulation, 

we have assumed that the chance constraints should be 

satisfied with confidence level greater than 0.5 

 . ., , , , 0.5k i j li e     

VI. THE PROPOSED FUZZY SOLUTION APPROACH 

 

To solve the MOPMILP model, an interactive method is 

applied in this research. To cope with multiple objective 

problems, various methods have been proposed. Among these 

methods, fuzzy interactive methods are one of the most 

attractive approaches in this area because of their ability in 

measuring and adjusting the satisfaction level of each 

objective function based on the decision maker preferences in 

an interactive and progressive way. Noteworthy, the proposed 

interactive method applied in this paper uses the TH 

aggregation function [13] to convert the original bi-objective 

model to an equivalent single objective one. The steps of the 

proposed fuzzy interactive method can be summarized as 

follows. 

1- Use the expected value of imprecise parameters to 

convert the fuzzy objective functions into their crisp ones. 

2- Determine the minimum acceptable confidence level for 

each chance constraint, ( . ., , , , )k i j li e    to convert the 

chance constraints into their equivalent crisp ones. 

3- Specify the a-positive ideal solution  and -

negative ideal solution  for each objective function. 

To obtain the -positive ideal solutions and the corresponding 

objective functions values, i.e.,  and 

,the equivalent crisp model should be solved 

for each objective function separately, and thereafter the -

negative ideal solutions can be estimated as follows. 

,  

4- Determine a linear membership function for each 

objective function as follows: 
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which  denotes the satisfaction degree of  objective 

function. 

5- Convert the bi-objective equivalent crisp model into a 

single-objective one using the TH aggregation function that 

results to the following model. 
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max 1 h h
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                        x F x   

                        0, 0,1w    

where  indicates the feasible region involving the 

constraints of equivalent crisp model and  denotes the 

minimum satisfaction degree of objective functions (i.e., 

. Additionally,  and indicate the 

importance of the  objective function and the coefficient of 

compensation, respectively. Indeed, the TH aggregation 

function actually looks for a compromise value between the 

min operator and the weighted sum operator based on the 

value of . 

6- Determine the importance of the fuzzy goals  and the 

value of compensation coefficient  based upon the decision 

maker preferences and solve the resulting single-objective 

crisp model. If the decision maker is satisfied with the 

obtained efficient solution, then stop and select the current 

solution as the final decision; otherwise go to the step 2 for 

seeking a new efficient solution by altering the required 

parameters such as  and  according to the 

revised and updated preferences of the decision maker. 

 

VII. COMPUTAYIONAL EXPERIMENT 

To demonstrate the validity and usefulness of proposed 

solution approach, numerical example is considered and the 

results of this numerical example showed in this section. The 

size of our test problem is shown in table 1 which it includes 

the number of distribution center, customer zone, collection 

center and recovery center. Triangular fuzzy parameters are 

generated based on [14], the three prominent point for 

imprecise parameter are estimated. The most likely  value 

of each parameter by using uniform distribution is generated at 

first and it is assumed that the related crisp value are equal to 

the most likely when the proposed crisp model is considered. 

For computing the most pessimistic  and most optimistic 

 value of a fuzzy parameter , two random number 

 are generated between 0.2 and 0.8 based on uniform 

distribution. So, based on these two random number,  and 

 are generated as follows [3]. 

 

 0

11 mc r c   and  21p mc r c   

Random generation for the most likely values based on 

uniform distribution are presented in table 2. 

Table 1. The number of facilities in our test problem 

Facilities  Number 

of plant  

Number 

of 

customer 

zone 

Number of 

potential 

distribution 

center 

Number 

of  

potential 

collection 

center 

Number 

of 

potential 

recovery 

center 

Number  1 5 4 4 3 

 

 

 

 

Table 2. The sources of random generation of the most likely values 
parameters Corresponding random 

distribution 

 

 

  

  

 

 

 

 

  

  

 

 

  

  
  
  
  
  
  
  
  

 

For solving the possibilistic and crisp model mathematical 

model are coded with the solver BARON 9.3.1 with GAMS 

23.6. Under different feasibility and importance weight hv  of 

objective function. It is noted that the value of   is set 0.4 for 

this numerical example. The result of this numerical example 

is shown in table 3. As it can be seen in table 3 the Opt% Gap 

of the result increases by increasing the  of the 

problem. It can be concluded that the TH method is 

appropriate and qualified method for solving the auxiliary 

MOLP problem, since it can obtain efficient solutions. TH 

method is more appropriate when decision makers have a 

tendency toward obtaining balanced efficient solutions and it 

pays more attention to minimum satisfaction level of 

objectives. 

 
Table 3. The result of  test problem with different level   

level    1w   2w  
1w  

2w  Opt% 

Gap 

CPU 

time (s) 

0.5 0.96 0.96 112375.30 475.23 4.5 1273 

0.6 0.96 0.90 118836.05 469.10 6.7 930 

0.7 0.91 0.90 123837.39 471.84 5.3 1375 

0.8 0.83 0.85 137839.21 463.24 7.11 1581 

0.9 0.79 0.92 163928.09 461.37 17.9 1126 

1 0.85 0.95 164640.11 457.02 22.01 1384 
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